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Abstract. We present a new integrable model for correlated electrons which is based onso(5)
symmetry. By using anη-pairing realization we construct eigenstates of the Hamiltonian with
off-diagonal long-range order. It is also shown that these states lie in the ground state sector. We
exactly solve the model on a one-dimensional lattice by the Bethe ansatz.

The study of models of correlated electrons is a significant tool in the theory of condensed
matter physics. On a one-dimensional lattice there are several known models which are exactly
solvable by Bethe ansatz methods. The most famous of these is the Hubbard model whose
solution was obtained by Lieb and Wu [1]. Another well known example is thet–J model,
the strong-coupling limit of the Hubbard model, which was in fact shown to be integrable at
the supersymmetric point [2] through use of the quantum inverse scattering method (QISM)
[3]. In this formalism the Hamiltonian of the model is derived from a solution of the Yang–
Baxter equation, hereafter referred to as anR-matrix, which provides a systematic method
to obtain higher-order conservation laws that guarantee integrability. An important aspect of
the integrable coupling of thet–J model is that theR-matrix is invariant with respect to the
Lie superalgebragl(2|1). For the case of the Hubbard model the symmetry algebra has been
identified asso(4) [4].

A further important integrable correlated electron model was proposed and solved through
the algebraic Bethe ansatz method by Essleret al [5]. This model generalizes the Hubbard
model with the addition of correlated hopping and pair hopping terms and is constructed
from anR-matrix invariant with respect to the Lie superalgebragl(2|2). Another direction
of generalization was given by Brackenet al [6] using theR-matrix obtained from the one-
parameter family of four-dimensional representations ofgl(2|1). The resulting model, known
as the supersymmetricU model has also been solved and analysed by Bethe ansatz techniques
[7]. Other types of Hubbard model generalizations can be found in [8]. In all the above
examples the underlying symmetry has crucial consequences for the multiplet structure of the
models providing insight into the ground state and elementary excitations.

Recently, it has been proposed that the antiferromagnetic and superconducting phases of
high-Tc cuprate compounds are unified by an approximateso(5) symmetry [9]. Considerable
support for this proposal came from numerical investigations in models for high-Tc materials.
In particular, it was shown that the low-energy excitations can be classified in terms of anso(5)
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symmetry multiplet structure [10, 11]. Subsequently, extended Hubbard models related with
anso(5) symmetry have been introduced and analysed in detail [12].

To our knowledge, no integrable correlated electron model associated with anso(5)
symmetry has been proposed nor exactly solved. In this paper we construct such a correlated
electron model which is exactly solved in one dimension by the Bethe ansatz. The integrability
of our Hamiltonian comes from the fact that it is derived from anso(5)-invariantR-matrix
which satisfies the quantum Yang–Baxter equation. Eigenstates of this Hamiltonian exhibiting
off-diagonal long-range order (ODLRO) can be constructed through anη-pairing mechanism.
We also argue that these states lie in the ground state sector, which is a prerequisite for
superconductivity.

The Hamiltonian of this model is given by

H =
L−1∑
i=1

hi,i+1 + hL,1 +µN +BSz (1)

where

hi,j = −
∑
σ=↑,↓

c
†
iσ cjσ (3− 2ni,−σ − 4nj,−σ ) + h.c.

−2(c†
i↑c

†
i↓cj↓cj↑ + h.c.)− 4(Sxi S

x
j + Syi S

y

j + 3Szi S
z
j )

−3(ni + nj )− 3ninj − 4[( 1
4(ni − nj )2 − (Szi − Szj )2]2. (2)

Above, ciσ , c†
iσ are annihilation and creation operators for electrons of spinσ , the ESi spin

matrices and theni↑, ni↓ occupation numbers of electrons at lattice sitei. The number of
lattice sites isL, Sz =∑L

i=1 S
z
i is the magnetization andN =∑L

i=1(ni↑ + ni↓) is the number
of electrons. This Hamiltonian exhibits correlated electron hoppings, pair hoppings,XXZ-
type interaction, chemical potential, nearest-neighbouring Coulomb interaction, and the last
term characterizes interactions favouring antiferromagnetism. The energy levels of the model
are

E = −
∑
j

12

4u2
j − 1

+µN +BSz (3)

where theuj are solutions of the Bethe ansatz equations(
ui + 1

2

ui − 1
2

)L
= −(−1)M1

M1∏
j 6=i

ui − uj + 1

ui − uj − 1

M2∏
k

ui − uk − 1

ui − uk + 1
i = 1, . . . ,M1

1=
M1∏
j

uj − ui − 1

uj − ui + 1

M2∏
k 6=i

uk − ui + 2

uk − ui − 2
j = 1, . . . ,M2

(4)

whereM1 = 2L−N andM2 = L−N↑. Integrability of this model will be established through
the QISM. The energy eigenvalues as well as the Bethe ansatz equations are obtained through
the analytic Bethe ansatz [13]. The key ingredient to both of these methods is the following
R-matrix [14]:

R(u) =
∑
i,j

(u(u− 3)eii ⊗ ejj + (3− u)eij ⊗ eji + (−1)i+jueij ⊗ eīj̄ ) (5)

which satisfies the Yang–Baxter equation

R12(u− v)R13(u)R23(v) = R23(v)R13(u)R12(u− v). (6)
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Above, the matriceseij have entries(eij )
k
l = δikδjl , the indices range from 1 to 4 andī = 5− i.

ThisR-matrix possesses the properties of

unitarity R(u)R(−u) = (u2 − 1)(u2 − 9)I ⊗ I (7)

crossing symmetry Rt1(u) = −A1R(3− u)A1 (8)

wheret1 denotes transposition in the first space andA =∑i (−1)iei
ī
.

The solution (5) is invariant with respect to the Lie algebraso(5) ∼= sp(4) which has ten
generators

aij = eij − (−1)i+j ej̄
ī
= −(−1)i+j aj̄

ī
(9)

satisfying the commutation relations

[aij , a
k
l ] = δkj ail − δil akj + (−1)i+j δj̄l a

k

ī
− (−1)i+j δk

ī
a
j̄

l .

In order to build an electronic model we first need to putZ2 grading in theR-matrix. This
is achieved by a redefinition of the matrix elements through

R(u)
ij

kl → (−1)[i][j ]+[k][j ]+[k][ l]R(u)
ij

kl (10)

where we choose the parities to be

[1] = [4] = 0 [2] = [3] = 1 and [eij ] = [i] + [j ].

Such a matrix satisfies theZ2 graded Yang–Baxter where the multiplication of tensor products
of matrices is governed by

(a ⊗ b)(c ⊗ d) = (−1)[b][c]ac ⊗ bd
in equation (6). Following the QISM, we may construct the transfer matrix

τ(u) = str0(R0L(u)R0L−1(u) . . . , R02(u)R01(u)) (11)

where str0 is the supertrace over the zeroth space. From the Yang–Baxter algebra it follows
that the transfer matricesτ(u) form a commuting family and the associated Hamiltonian (1)
with µ = 0 andB = 0 can be obtained from

H = τ(u)−1 d

du
τ(u)

∣∣∣∣
u=0

where, in view of the grading, we have used the following identification:

|1〉 ≡ | ↑↓〉 |2〉 ≡ | ↑〉 |3〉 ≡ | ↓〉 |4〉 ≡ |0〉.
In terms of the fermion operators, theso(5) generators (9) can be written as

a1
1 = n− 1 a2

2 = 2Sz a1
2 = c†

− a2
1 = c− a1

3 = −c†
+

a3
1 = −c+ a1

4 = 2c†
−c

†
+ a4

1 = 2c+c− a2
3 = 2S+ a3

2 = 2S−.
(12)

On the two-fold tensor product space these generators act according to the co-product

1(aij ) = aij ⊗ I + (−1)n ⊗ aij for aij = a1
2, a

2
1, a

1
3, a

3
1

1(aij ) = aij ⊗ I + I ⊗ aij otherwise
(13)

which extends to theL-fold tensor space co-associatively. Each of the local Hamiltonians
hi,i+1(2) areso(5)-invariant. However due to the non-cocommutativity of the co-product the
hL,1 term breaks theso(5) symmetry of the global Hamiltonian (1). In spite of this, anso(4)
symmetry is preserved comprising of anso(3) spin realization and an additionalso(3) η-pairing
realization. For this reason we can add arbitrary chemical potential and magnetic field terms
to the Hamiltonian which do not violate the integrability.
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The presence of theη-pairing realization

η =
L∑
j=1

cj,↑cj,↓ η† =
L∑
j=1

c
†
j,↓c

†
j,↑ ηz =

L∑
j=1

1
2(nj − 1) (14)

which can also be expressed in terms of the subalgebra generated by{a1
1, a

1
4, a

4
1}, allows a

large number of states to be constructed exhibiting ODLRO [15]. Hereafter, we treat the case
µ = 0,B = 0. One can verify thatH |0〉 = 0 where|0〉 denotes the vacuum state. Thus the
2N electron states

|9N 〉 = (η†)N |0〉 (15)

are eigenstates of the global Hamiltonian with zero energy. These states are well known to
possess ODLRO; that is

lim
|l−j |→∞

〈9N |c†
j,↓c

†
j,↑cl,↑cl,↓|9N 〉
〈9N |9N 〉 = N

L

(
1− N

L

)
(16)

in the thermodynamic limit (N , L → ∞, N /L fixed). Since the Hamiltonian is Hermitian
the ground state energy satisfies

E > LE0

whereE0 is the minimum energy of the two-site Hamiltonian. For this model we can determine
thatE0 = 0. It is thus concluded that the states (15) lie in the ground state sector.

The energy levels (3) are determined from the eigenvalues of the transfer matrix (11)
which leads to a complicated expression that we will not give here. However, we mention that
these eigenvalues are obtained through the analytic Bethe ansatz which exploits the properties
of unitarity (7), crossing symmetry (8) and asymptotic behaviour of theR-matrix. As usual,
the Bethe ansatz equations are derived by the requirement that the eigenvalues are analytic
functions.

By a suitable change in the boundary conditions, one may recover a closed model with
exactso(5) symmetry. In this instance the Hamiltonian reads

H =
L−1∑
i=1

hi,i+1 + (−1)n1(N−n1)hL,1(−1)n1(N−n1)

and the energies are still given by the expression (3) withµ = B = 0 but now subject to the
modified Bethe ansatz equations(

ui + 1
2

ui − 1
2

)L
= −

M1∏
j 6=i

ui − uj + 1

ui − uj − 1

M2∏
k

ui − uk − 1

ui − uk + 1
i = 1, . . . ,M1

1=
M1∏
j

uj − ui − 1

uj − ui + 1

M2∏
k 6=i

uk − ui + 2

uk − ui − 2
j = 1, . . . ,M2.

(17)

Integrability in this case follows from the general construction of [16]. Because of the presence
of exactso(5) symmetry for this model we can describe the ground state structure. For a chain
of lengthL it is anso(5) multiplet of dimension1

6(L + 3)(L + 2)(L + 1) (rankL symmetric
representation) which contains states of all possible fillings 06 N 6 2L and magnetizations
−L 6 Sz 6 L.

In conclusion, we have introduced a new integrable correlated electron model based on an
so(5) symmetry. The model was exactly solved through the Bethe ansatz and shown to have
ground states exhibiting ODLRO.
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